跳到主要內容區塊

台大化工系網站

公告表

A new technology of fabrication and modulation of scaffolding materials using a vapor-phase process discovered by the research team of professor Hsien-Yeh Chen and was published in《Nature Communications》

組織工程支架材料提供了再造或者修復器官及組織等再生醫學技術之發展。近代先進工程支架的發展也成功開發更複雜的分子與支架結構靈活性,允許在物理和化學方面進行多功能組裝組織工程支架,並模擬天然細胞外基質(ECM)。然而目前面臨之挑戰仍然包括細胞-細胞聚集、多種類型細胞的分佈和定位、細胞類型的共培養、生物分子的分佈和定位、潛在的免疫反應、細胞-材料之間相互作用的操控等限制。本校工學院化工系、前瞻綠色材料高值化研究中心、分子生醫影像研究中心陳賢燁教授的研究團隊在組織工程支架材料的探索中,以突破技術在氣體的環境之下可藉由操控氣體分子的熱力學性質,使氣體分子進行昇華(sublimation)以及沉積(deposition)的途徑來製造並模組化組織工程支架。在同一個支架中由特定功能模塊的空間排列組成,在不同細胞類型和生物微環境之間建立了重要的生物界限。此創新的製程,無須先進的設備,步驟簡單不耗時,並具備大量生產的潛力。在材料製造的過程中,可以輕易調控支架材料的幾何形狀,調控各種重要的材料物理機械特性例如,材料軟硬度,孔洞大小,孔隙率,以及調控化學生物特性,例如選擇性分佈生物分子以及活細胞的種類及組成比例來構成細胞組織生長所需的精密環境。   該研究團隊利用這個先進組織工程支架展示了高度生物相容性,成功引導支架内細胞進行細胞增生,骨分化,以及神經分化,甚至可同時進行多重細胞生長分化達到複雜的骨組織血管新生(angiogenesis)。   此研究成果再次體現了本系跨領域整合(化工技術、綠色高值化材料、生醫分子影像)以及自行與研發的實力。核心研究人員還包括分子生醫影像研究中心細胞工程專家吳治宇博士、化工系博士班學生吳亭瑩、以及屏東科技大學熱帶農業暨國際合作系助理教授黃晁瑋,研究成果已於2021年6月登上國際知名之科學期刊《Nature Communications》。利用此技術製造出更多複雜功能之組織工程材料於各再生醫學領域的重要應用目前正積極著手研究中,期望未來有更多新功能的組織工程材料可以被創造出來。詳細研究成果請參閱正式發表的全文“Vapor-phased fabrication and modulation of cell-laden scaffolding materials”, 2021 June, DOI: 10.1038/s41467-021-23776-8。  

Index

模組化組織工程支架: 氣體製程示意圖以及實驗成果。右下圖為陳賢燁教授帶領之跨領域聯合團隊。

[:en]Modular approaches are used to produce scaffolding materials for tissue engineering have delivered promising results for bottom-up methods, which show superior advantages, including more complex molecular and structural flexibility allowing for multifunctional assembly both in physical and chemical aspects to better mimic the native extracellular matrix (ECM). However, challenges ranging from cell-cell aggregation, distribution and localization of multiple types of cells, co-culture of cell types, distribution and localization of biomolecules, limited and potential immune-responsive materials, lack of surface modification of materials to the control of cell-material interactions, remain unanswered.   An interdisciplinary research team lead by Prof. Hsien-Yeh Chen across the Department of Chemical Engineering, the Advanced Research Center for Green Materials Science and Technology, and the Molecular Imaging Center in National Taiwan University (NTU), has found a new fabrication process of scaffold materials that are comprised of multiple biomolecules and living cells with built-in boundaries separating the distinct compartments containing defined biological configurations and functions. They show a control mass transport of species in vapor sublimation and deposition conditions to fabricate the scaffolds and demonstrate a mass production potential of such a process. In their research results, the new fabrication process and the advanced scaffolds exhibited extreme biocompatibility, enhanced cell proliferation, osteogenesis, and neurogenesis, which can be assembled into various geometric configurations, and was able to perform cell co-culture experiments to show independent osteogenesis and angiogenesis activities from separate compartments in one scaffold construct.   The core researchers also include Dr. Chih-Yu Wu, a senior research fellow of the Molecular Imaging Center of NTU, Ting-Ying Wu, a Ph.D. student of the Department of Chemical Engineering of NTU, and Prof. Chao-Wei Huang, an assistant professor of Department of Tropical Agriculture and International Cooperation of National Pingtung University of Science and Technology. The research results were published in the internationally renowned scientific journal Nature Communications in June 2021. The use of this technology to produce complex and multifunctional tissue engineering scaffold materials in various fields of regenerative medicine is currently under research, and it is expected that more types of functional scaffold products can be created in the near future. For detailed scientific research results, please refer to the full text of the official publication. “Vapor-phased fabrication and modulation of cell-laden scaffolding materials”, 2021 June, DOI: 10.1038/s41467-021-23776-8.  

Index

Modulated tissue engineering scaffolds: schematic illustration of the vapor-phased fabrication and modulation process, and the results of the research work. The bottom-right photo is the interdisciplinary research team lead by Prof. Hsien-Yeh Chen.